
SuMPF Documentation
Release 0.16 alpha

Jonas Schulte-Coerne

Oct 29, 2019

Contents

1 Contents 3
1.1 Reference . 3
1.2 Organisation . 6
1.3 Tutorials . 8

2 Indices and tables 15

Python Module Index 17

Index 19

i

ii

SuMPF Documentation, Release 0.16 alpha

The SuMPF package provides some classes, that implement offline (non-realtime) signal processing functionalities.
SuMPF is being developed with a focus on acoustics, but it might be applicable for the analysis of other time series
data as well.

Here is a brief example of SuMPF in action:

>>> import sumpf
>>> noise = sumpf.GaussianNoise(mean=0.0,
... standard_deviation=1.0,
... sampling_rate=48000.0,
... length=2 ** 14)
>>> filter_ = sumpf.ButterworthFilter(cutoff_frequency=1000.0, order=4, highpass=True)
>>> filtered = noise * filter_
>>> spectrum = filtered.fourier_transform()

Contents 1

SuMPF Documentation, Release 0.16 alpha

2 Contents

CHAPTER 1

Contents

1.1 Reference

This section contains the API reference for the SuMPF package.

1.1.1 Signals

This section contains the API reference for the Signal class and its subclasses.

The base class

Waves

This section documents classes for periodic waves.

The inherited methods of the Signal class are not documented here.

Noise

This section documents classes for random noise signals.

The inherited methods of the Signal class are not documented here.

Sweeps

This section documents classes for sine sweeps and their inverses.

3

SuMPF Documentation, Release 0.16 alpha

Linear sweeps

Exponential sweeps

Window functions

This section documents classes for window functions. Some classes require scipy to be available. If scipy is not
available, these classes will be missing in the sumpf module.

The inherited methods of the Signal class are not documented here.

Other

This section documents classes for other signals.

The inherited methods of the Signal class are not documented here.

1.1.2 Spectrums

This section contains the API reference for the Spectrum class and its subclasses.

The base class

Pseudo-noise spectrums

This section documents classes for spectrums of pseudo-noise. These spectrums can be transformed to the time domain
to have a noise signal with a defined magnitude spectrum.

The inherited methods of the Spectrum class are not documented here.

1.1.3 Filters

This section contains the API reference for the Filter class and its subclasses.

The base class

IIR filters

This section contains the API reference for classes, that implement common IIR filters.

The inherited methods of the Filter class are not documented here.

Bands filter

This section contains the API reference for the bands filter class.

The inherited methods of the Filter class are not documented here.

4 Chapter 1. Contents

https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy
https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy

SuMPF Documentation, Release 0.16 alpha

Simple operations

This section contains the API reference for filters, that do simple mathematical operations.

The inherited methods of the Filter class are not documented here.

1.1.4 Other data containers

This section contains the API reference for data containers, that do not have subclasses.

Spectrogram

This section contains the API reference for the Spectrogram class.

1.1.5 Signal processing blocks

This section contains the API reference for classes, that implement operations in a signal processing chain.

Combining data sets

This section documents classes, that combine multiple data sets into one.

Input/Output

This section documents classes, that interface SuMPF with the outside world.

1.1.6 Internal features

This section documents features, that are not part of the public API of the SuMPF package. They are meant to be used
internally in the package and its tests and may change without further notice.

Enumerations

This section documents the enumeration classes.

Filter terms

This section documents the terms, from which the transfer functions of the Filter class can be built.

The base class

Primitive terms

Unary terms

Binary terms

1.1. Reference 5

SuMPF Documentation, Release 0.16 alpha

Other Filter functionalities

This section documents some internal functionalities, that are related to the Filter class.

Computation related

Persistence related

Functions

This section documents internally used helper functions.

Persistence functionalities

File formats

This section documents enumeration classes, that define flags for file formats, in which SuMPF’s data containers can
be stored.

1.2 Organisation

This section contains organisational information and instructions for the installation of the SuMPF package.

1.2.1 Installation

Installation from source

To retrieve the sources, the git-repository of the SuMPF package has to be cloned.

git clone https://github.com/JonasSC/SuMPF.git SuMPF

The SuMPF at the end of this command specifies the directory, in which the local copy of the repository shall be
created. After cloning, move to that directory.

cd SuMPF

Now the SuMPF package can be installed system wide with the following command:

python3 setup.py install

Alternatively, the package can be installed only for the current user.

python3 setup.py install --user

6 Chapter 1. Contents

SuMPF Documentation, Release 0.16 alpha

1.2.2 Dependencies

Python version

The SuMPF package is currently developed and tested with Python 3.7. Most features should be available with Python
3.6 as well.

Other packages and tools

Many core features of SuMPF depend on numpy and connectors. Importing SuMPF will fail, if these packages
are not available.

Other packages are optional, but not installing them, will reduce the number of features of SuMPF.

• some computations require scipy.

• saving certain audio files requires soundfile.

• numexpr is used for performance gains.

• playing back and recording audio signals is done with jack.

• the setup is done with setuptools.

• the tests are run with pytest.

– thorough testing is achieved with hypothesis.

– the test coverage is assessed with pytest-cov.

– the code is analyzed with Pylint and flake8.

– spell-checking is done with pyenchant.

• the documentation is built with sphinx.

– the documentation uses the sphinx_rtd_theme.

– graphs are drawn with sphinx.ext.graphviz.

– some examples rely on matplotlib.

1.2.3 Makefile targets

The Makefile in the source code repository of the SuMPF package has the following targets:

• make test runs the unit tests.

• make test_coverage runs the unit tests and prints information about their test coverage.

• make test_without_optional_dependencies runs the unit tests with the optional dependencies
being made unavailable, so that it’s tested, if SuMPF degrades gracefully.

• make lint checks the package and the unit tests with Pylint and flake8.

• make docs builds the documentation.

The test, test_coverage and test_without_optional_dependencies targets also accept parame-
ters, which are passed to the pytest call. This allows to run only specific tests, for example make test
documentation will only run the doctest tests of the files in the documentation directory.

1.2. Organisation 7

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
https://connectors.readthedocs.io/en/latest/index.html#module-connectors
https://docs.scipy.org/doc/scipy/reference/index.html#module-scipy
https://pysoundfile.readthedocs.io/en/latest/index.html#module-soundfile
https://numexpr.readthedocs.io/en/latest/api.html#module-numexpr
https://jackclient-python.readthedocs.io/en/latest/index.html#module-jack
https://hypothesis.readthedocs.io/en/latest/healthchecks.html#module-hypothesis
http://www.sphinx-doc.org/en/master/usage/extensions/graphviz.html#module-sphinx.ext.graphviz
https://docs.python.org/3/library/doctest.html#module-doctest

SuMPF Documentation, Release 0.16 alpha

1.2.4 Licenses

LGPLv3+ for the source code

The source code of the SuMPF package can be distributed and modified under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or any later version. A
copy of this license can be found in the source code repository in the file LICENSE.txt or on the website of the
GNU project.

CC0 for the documentation

The documentation for the SuMPF package and the source code snippets in it can be distributed and modified under
the terms of the CC0 license as published by the Creative Commons Corporation. This means, that the documentation
and the source code snippets are practically in the public domain. The full text of the license can be found on the
website of the Creative Commons Corporation.

It would be great, if the redistributed pieces of this work were marked with a reference to this project, but this is by no
means mandatory.

1.3 Tutorials

This section contains tutorials, which demonstrate and explain the functionalities of the SuMPF package.

1.3.1 Basic concepts

This section explains the basic concepts of the SuMPF package.

Data containers and signal processing blocks

SuMPF provides mainly two sets of classes. One is a set of data containers, while the other classes implement signal
processing operations.

The data containers are used to store measurements or analysis results, which are passed around between the signal
processing steps. Data containers should be considered immutable.

The instances of signal processing steps are mutable objects, which have setter methods for data and parameters. Their
getter methods return the processing results. The methods of the processing objects can be connected to each other, so
that the whole processing chain is updated, once a parameter is changed. See the connectors package for further
information on this.

While the connections between signal processing classes are handy in interactive applications, the instantiation of
these classes is tedious in simple analysis scripts. For this reason, the data containers provide many methods and
overloaded operators, which implement a readable API for signal processing operations.

Derived classes of data containers

So far, SuMPF features three base classes for signal processing related data:

• sumpf.Signal stores equidistantly sampled time series data.

• sumpf.Spectrum stores equidistantly sampled frequency domain data.

• sumpf.Filter provides some functions to give an analytical description of a transfer function.

8 Chapter 1. Contents

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://connectors.readthedocs.io/en/latest/index.html#module-connectors

SuMPF Documentation, Release 0.16 alpha

The classes Signal and Spectrum are basically wrappers around numpy.array()s, that add metadata and
convenience methods.

SuMPF provides sub-classes of these data containers, that allow the generation of specific data sets, such as
ExponentialSweep or ButterworthFilter. These sub-classes take some parameters as constructor argu-
ments and initialize the respective data container accordingly. Often they also feature additional methods to those, that
are already provided by their base class.

1.3.2 Measuring the impulse responses of harmonics

This tutorial shows the measurement and analysis of the impulse response of a nonlinear system. This demonstrates
the features of SuMPF, that are useful for writing concise analysis scripts, such as the data generation classes, their
overloaded operators and other methods.

Theoretical background

A sweep excites only one frequency at a time and it starts with the lowest frequency. A nonlinear system, that is
excited with a frequency does not only respond with its excitation frequency, but also with its integer multiples. This
means, that when excited with a sweep, a nonlinear system responds with frequencies, that are excited at a later point
in time. When computing the impulse response of the system, these components are shifted in the non-causal part of
the impulse response. An exponential sweep has the convenient property, that this shift is constant for each frequency,
which means, that the seemingly non-causal artifacts add up to impulse responses for the harmonic distortions.

This idea has been explored and described by Angelo Farina and Antonin Novak. Novak also developed a variation of
the exponential sweep, the synchronized sweep, which allows measuring the impulse responses of the harmonics with
the correct phase. In this simple example, this variation is omitted, since it is not (yet) implemented in SuMPF.

Importing the required packages

We need SuMPF for the signal processing and matplotlib for rendering the plots.

>>> import sumpf
>>> from matplotlib import pyplot

Defining a nonlinear system

In this section, we define a nonlinear system, that shall be measured with SuMPF. This is a simple function, that
expects the excitation signal as an argument and returns the response signal.

>>> def system(excitation):
... x = excitation
... distorted = 0.5 * x ** 3 - 0.6 * x ** 2 + 0.1 * x + 0.02
... highpass = sumpf.Chebyshev1Filter(cutoff_frequency=100.0,
... ripple=4.0,
... order=4,
... highpass=True)
... lowpass = sumpf.ButterworthFilter(cutoff_frequency=3000.0,
... order=2,
... highpass=False)
... filtered = distorted * highpass * lowpass
... shifted = filtered.shift(50)
... return shifted

1.3. Tutorials 9

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://pcfarina.eng.unipr.it/Public/AES-110/154-aes110.PDF
https://ant-novak.com/pages/sss/

SuMPF Documentation, Release 0.16 alpha

the excitation is relabeled to x, so it becomes clearer, that distorted is basically a polynomial of the excitation
signal. Note, how the Signal class has overloaded its math operators, so that the power, the multiplication and the
addition can be written, as if x was an ordinary number.

lowpass and highpass are filters, that contain an analytical description of a filter’s transfer function. Note, that we
did not instantiate the Filter class and built those IIR filters from scratch. Instead, we used subclasses of Filter,
which generate the desired transfer functions from common filter parameters.

The filters can be applied to a signal by multiplying the two. Behind the scenes, this is an element-wise multiplication
in the frequency domain.

The Signal class has an offset parameter, which defines, where the first sample of the signal is located in relation
to the sample of the zero point in time. This allows to create signals, that start before (negative offset) or after (positive
offset) that zero point in time. The shift() method is used in this example to increase the offset of the system’s
response Signal by 50 samples, which means, that the response is delayed.

Creating an excitation signal

At first, we need an exponential sweep. SuMPF provides a subclass of Signal to generate one.

>>> sweep = sumpf.ExponentialSweep(start_frequency=20.0,
... stop_frequency=5000.0,
... interval=(4096, -4096),
... sampling_rate=48000,
... length=2 ** 16)

The interval parameter specifies, that the sweep shall sweep from the start to the stop frequency between the given
sample indices. The stop index is given as a negative number, which means that it shall be counted from the back of
the signal.

If a signal starts or stops abruptly, this jump in amplitude excites many frequencies at once, which spoils the sweep’s
property, that it only excites one frequency at a time. To avoid these abrupt jumps, the sweep must be faded in and
out gently. If these fades are applied outside the interval, we know, that the specified frequency range of the sweep is
unaffected by the fade.

We can now generate a signal, that defines the fade in and the fade out of the excitation signal. In accordance with the
sweep’s interval parameter, the fade in should happen in the first 4096 samples, while the fade out should affect
the last 4096 samples. The fade signal is basically a mask, that rises from 0.0 to 1.0 during the rise interval, stays at
1.0 for a while and falls back to 0.0 during the fall interval.

>>> fade = sumpf.Fade(rise_interval=(0, 4096),
... fall_interval=(-4096, 1.0),
... sampling_rate=48000.0,
... length=2 ** 16)
>>> excitation = sweep * fade

Note how the sample indices of the fall_interval parameter are defined. As above, the start index is given as a
negative number, which means, that the index is counted from the back of the signal. The stop index is given as a float.
SuMPF accepts floats between 0.0 and 1.0 as sample indices, which will be multiplied with the length of the data set
and then rounded to the next integer. In this case, the 1.0 means, that the fall interval shall span until the end of the
signal.

The fading mask is then applied to the sweep, by multiplying the two.

Of course, the sweep has to start at a lower frequency and end at a higher frequency, than the given start and stop
frequencies, because of the additional samples outside the interval. Since we know, that the nonlinear system contains
a third degree polynomial, we know, that it produces nonlinearities up to the third harmonic. This means, that we
should not excite more than 8kHz, because otherwise, the third harmonic will contain frequencies above 24kHz,

10 Chapter 1. Contents

SuMPF Documentation, Release 0.16 alpha

which is more than half the sampling rate of 48kHz and therefore will cause aliasing. Since the sweep’s start and
stop frequencies are defined for the given interval and the sweep continues outside that interval, we don’t know the
minimum and maximum frequencies, that are actually excited by the sweep. In addition to the functionality of the
Signal class, the ExponentialSweep class provides methods, that compute these frequencies.

>>> sweep.maximum_frequency()
7417.395449686136

Measuring the response of our system

The response of our example system is computed by calling the function.

>>> response = system(excitation)

Computing the impulse response of the system

Since the response, that we have got from our system is not the one to an impulse, but the one to an exponential sweep,
we have to compensate for the differences between the sweep and an impulse. One way to do that is to convolve the
response with an inverse exponential sweep, which is a signal, whose convolution with an exponential sweep results
in an impulse. SuMPF offers a class to create such a signal.

>>> inverse = sumpf.InverseExponentialSweep(start_frequency=20.0,
... stop_frequency=5000.0,
... interval=(4096, -4096),
... sampling_rate=48000,
... length=2 ** 16)

Note that the inverse sweep takes exactly the same parameter values as the sweep, to which it shall be the inverse.

The convolution is computed with the convolve() method. This method accepts a mode-parameter, which speci-
fies, how the convolution shall be computed. In this case, the convolution is computed in the frequency domain, which
is faster than the time domain implementations.

>>> impulse_response = response.convolve(inverse, mode=sumpf.Signal.convolution_modes.
→˓SPECTRUM_PADDED)

Properties of the impulse response

Now, the impulse response can be plotted.

>>> pyplot.plot(impulse_response.time_samples(), impulse_response.channels()[0]) #
→˓doctest: +SKIP
>>> pyplot.xlabel("time") #
→˓doctest: +SKIP
>>> pyplot.ylabel("amplitude") #
→˓doctest: +SKIP
>>> pyplot.show() #
→˓doctest: +SKIP

There are two things to point out here. First, the Signal class provides the method time_samples(), which
creates an array, that contains the time values of the signal’s samples. This array can be used for the x-values of the
plot. And second, all data sets in SuMPF support multiple channels. For the Signal class, this means, that the
channels() method returns a two dimensional array, in which the rows correspond to a channel. For the plot, a
single channel of this array has to be extracted.

1.3. Tutorials 11

SuMPF Documentation, Release 0.16 alpha

The plot shows three impulses. The largest one around time point zero is the one, that corresponds to the linear
components of the system’s response. The two impulses in the negative time domain are the impulse responses of the
second and third harmonic.

Cutting out the impulse responses

The ExponentialSweep and InverseExponentialSweep classes provide the
harmonic_impulse_response() method, with which the impulse responses of the harmonics can be
cut out of the measured impulse response.

>>> harmonic1 = sweep.harmonic_impulse_response(impulse_response=impulse_response,
... harmonic=1)
>>> harmonic2 = sweep.harmonic_impulse_response(impulse_response=impulse_response,
... harmonic=2)
>>> harmonic3 = sweep.harmonic_impulse_response(impulse_response=impulse_response,
... harmonic=3)

The resulting impulse responses of the harmonics are ordinary signals, that can be plotted like described above.

>>> for harmonic in [harmonic1, harmonic2, harmonic3]:
→˓ # doctest: +SKIP
... pyplot.plot(harmonic.time_samples(), harmonic.channels()[0], label=harmonic.
→˓labels()[0]) # doctest: +SKIP
>>> pyplot.xlabel("time")
→˓ # doctest: +SKIP
>>> pyplot.ylabel("amplitude")
→˓ # doctest: +SKIP
>>> pyplot.legend()
→˓ # doctest: +SKIP
>>> pyplot.show()
→˓ # doctest: +SKIP

Note, that this time, the plot has a legend, that was created from the impulse responses’ labels.

Note that the cut out impulse responses are all shifted to the zero point in time.

Merging the impulse responses into one multi-channel signal

For convenience (and to demonstrate that feature), the harmonics are merged into a single Signal instance with one
channel per harmonic.

>>> harmonics = sumpf.MergeSignals([harmonic1, harmonic2, harmonic3]).output()

In a scripting application, like this tutorial, the API for merging signals is inconvenient. Rather than being a function,
it requires instantiating the MergeSignals class and calling its output()method. This is due to a design decision
in SuMPF, that all functionalities, that do not fit in the data container classes, are implemented in classes for signal
processing blocks, that can be connected to form complex signal processing networks, in which value changes are
automatically propagated.

Thanks to the zip() function, plotting the merged signal is a bit more convenient, than plotting the individual
harmonics before.

>>> for channel, label in zip(harmonics.channels(), harmonics.labels()): # doctest:
→˓+SKIP
... pyplot.plot(harmonics.time_samples(), channel, label=label) # doctest:
→˓+SKIP

(continues on next page)

12 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#zip

SuMPF Documentation, Release 0.16 alpha

(continued from previous page)

>>> pyplot.xlabel("time") # doctest:
→˓+SKIP
>>> pyplot.ylabel("amplitude") # doctest:
→˓+SKIP
>>> pyplot.legend() # doctest:
→˓+SKIP
>>> pyplot.show() # doctest:
→˓+SKIP

Note, that now, all impulse responses have the same length. Internally, the Signal class uses a two-dimensional
numpy.array(), that cannot store channels with different lengths. Therefore, the MergeSignals class fills
missing samples with zeros.

Visualizing the transfer function

Computing the transfer function from an impulse response is done by transforming it to the frequency domain with
the help of the fourier transform.

>>> transfer_function = harmonics.fourier_transform()

The resulting transfer function is stored in a Spectrum instance. Since the transfer function’s channels store complex
values, it is most common, to plot only its magnitude. The Spectrum class’s frequency_samples() method
provides an array of frequency values, that can be used as x-axis values for the plot.

>>> for magnitude, label in zip(transfer_function.magnitude(), transfer_function.
→˓labels()): # doctest: +SKIP
... pyplot.plot(transfer_function.frequency_samples(), magnitude, label=label)
→˓ # doctest: +SKIP

In addition to the transfer function’s magnitude spectrum, it is possible to include a couple of frequencies, that have
been used in this tutorial, as vertical lines in the plot:

• The red lines mark the defined start and stop frequencies of the exponential sweep.

• The black lines mark the minimum and maximum frequencies, that the sweep has excited, due to its fade in and
fade out.

• The blue lines mark the cutoff frequencies of the filters in the system, that has been measured with the sweep.

>>> pyplot.axvline(20.0, linestyle="--", color="r") # doctest:
→˓+SKIP
>>> pyplot.axvline(5000.0, linestyle="--", color="r") # doctest:
→˓+SKIP
>>> pyplot.axvline(sweep.minimum_frequency(), linestyle="--", color="k") # doctest:
→˓+SKIP
>>> pyplot.axvline(sweep.maximum_frequency(), linestyle="--", color="k") # doctest:
→˓+SKIP
>>> pyplot.axvline(100.0, linestyle="--", color="b") # doctest:
→˓+SKIP
>>> pyplot.axvline(3000.0, linestyle="--", color="b") # doctest:
→˓+SKIP

And with that done, it’s only a few lines of code to fine tune and display the plot.

>>> pyplot.xlabel("frequency") # doctest: +SKIP
>>> pyplot.ylabel("magnitude") # doctest: +SKIP

(continues on next page)

1.3. Tutorials 13

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array

SuMPF Documentation, Release 0.16 alpha

(continued from previous page)

>>> pyplot.loglog() # doctest: +SKIP
>>> pyplot.legend() # doctest: +SKIP
>>> pyplot.xlim(10.0, 12000.0) # doctest: +SKIP
>>> pyplot.ylim(0.001, 10.0) # doctest: +SKIP
>>> pyplot.show() # doctest: +SKIP

14 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• search

15

SuMPF Documentation, Release 0.16 alpha

16 Chapter 2. Indices and tables

Python Module Index

s
sumpf, 1

17

SuMPF Documentation, Release 0.16 alpha

18 Python Module Index

Index

S
sumpf (module), 1

19

	Contents
	Reference
	Organisation
	Tutorials

	Indices and tables
	Python Module Index
	Index

